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Abstract

The transverse free vibration of a class of variable-cross-section beams is investigated using the Wentzel, Kramers,

Brillouin (WKB) approximation. Here the governing equation of motion of the Euler–Bernoulli beam including axial force

distribution is utilized to obtain a singular differential equation in terms of the natural frequency of vibration and a WKB

expansion series is applied to find the solution. Based on this formulation, a closed form solution is obtained for

determination of natural vibration mode shapes and the corresponding frequencies. The first four terms of this asymptotic

solution are simplified for homogenous beams to give a compact third-order WKB approximation. Next, the resulting

solution is employed to determine the natural frequencies and mode shapes of some examples with and without axial force

distribution. The results are then been compared with those in the literature and very good agreement is achieved.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering problems are often described by partial differential equations and in most cases it is extremely
difficult to find their closed form solutions. Consequently, more efforts have been mainly concentrated on
approximate numerical methods such as finite element, finite difference and boundary element methods which
are widely used to solve such types of problems. Nevertheless, besides all advantages of using such numerical
methods, closed form solutions appear more appealing because of their account of the physics of the problems
and convenience for parametric studies. Furthermore, closed form solution may be utilized for developing
more efficient and accurate numerical methods.

The other advantage of closed form solutions is their significance in the field of inverse problems. A close
form solution can be more useful than the numerical methods to determine or design the characteristic of an
engineering system (e.g. geometry), to achieve a prescribed behavior and function. Designing a structure for
desired mode shapes of free vibration, in addition to natural frequencies, for engineering applications (e.g.
resonant-mode micro sensors and actuators, acoustics, manufacturing tools, etc.), are some examples of this
issue [1].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Investigation of vibrations of beam-like structures, as fundamental structural elements in many engineering
applications, has been an interesting field of study for many researchers. Due to the wide range of applications
and the specific geometric feature of beams, in which one dimension is much larger than the other two, various
beam models have been employed to simulate the structural dynamics of aircraft wings, helicopter blades,
spacecraft antennas, robot arms, towers and for many other industrial applications. Numerous methods such as
experimental, analytical and numerical methods have been developed and used to analyze the structural dynamics
of beam-like structures. In this respect, the modal analysis is a well-known practical technique for investigation of
the dynamic response and vibrations of beams. The modal approach gives the solution in a series in terms of
natural mode shapes and the corresponding generalized coordinates. Subsequently, one needs first to determine
the natural mode shapes and frequencies of free vibrations, analytically or numerically for using such techniques.

A lot of research, much of it by Prescott [2] and Meirovitch [3], has been done on the free vibrations of beams.
Indeed transverse free vibrations of non-uniform beams have been studied by numerous researchers in both
aeronautical and mechanical engineering fields either analytically or numerically. Added to this, several
analytical solutions, most of which are applied for linearly tapered beams, have been represented in terms of
orthogonal polynomials [4], Bessel functions [5–7], hyper geometric series [8], power series by Frobenius method
[9,10], Differential transform method (DTM) [11] and classical Jacobi polynomials. Some analytical solutions
have also been developed for several classes of non-uniform beams, based on uniform beam theory [12]. The
dynamic stiffness method has been utilized to obtain natural frequencies and mode shapes of rotating tapered
beam in Refs. [13,14] in which several cases are studied with various rotational frequencies and hub diameters.

On the other hand, a wide range of approximate and numerical solutions such as Rayleigh-Ritz, Gallerkin,
finite difference, finite element and spectral finite element methods have been used to obtain the natural
vibration characteristics of variable-section beams [15–20].

The idea of the Wentzel, Kramers, Brillouin (WKB) approximation for solving differential equations has
been revitalized during the 1920s, motivated by the need of having explicit approximate analytical
representations of solutions to the 1D stationary Schrödinger equation in quantum mechanics [21] and
recently has been developed for matrix differential equation and semi-discretized partial differential equations
[22] and is used in many engineering fields. In the field of structural dynamics, the WKB method has been
utilized in combination with the dynamic stiffness method to investigate the free vibration of marine risers
[23]. In this reference a second-order WKB approximation is used to develop a WKB-based dynamic element
stiffness matrix for free vibration evaluations. Complex WKB method has been also used for studying some
structural dynamics problems in thin cylindrical shells [24,25].

This paper generally deals with the transverse free vibrations of typical truncated non-uniform Euler–Bernoulli
beams by using a WKB global approximation. The asymptotic solution is obtained for a general Euler–Bernoulli
beam including the axial force and simplified for the case of a homogenous beam. The subsequent solution is used
to investigate two illustrative examples for determination of natural mode shapes and frequencies.

2. Governing equation

The governing equation for investigation of free transverse vibrations of a non-uniform Euler–Bernoulli
beam of length L is a fourth-order linear differential equation with variable coefficients which can be expressed
as follows [3]:

a4w00 x; tð Þ
� �00

� pw0 x; tð Þð Þ
0
þ b4 €w x; tð Þ ¼ 0; 0oxoL, (1)

where w(x,t) is the transverse displacement and p is the axial force distribution over the beam which is positive
in tension. The operators ( )0 and ð�Þ denote the partial derivatives with respect to x and t, respectively and

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
EI xð Þ4

p
; b ¼

ffiffiffiffiffiffiffiffiffiffi
m xð Þ4

p
, (2)

where EI(x) and m(x) are the bending stiffness and mass distribution of the beam, respectively. Assuming
harmonic oscillations yields

w ¼ w̄ xð Þ exp ltð Þ; l ¼ io; i ¼
ffiffiffiffiffiffiffi
�1
p

, (3)

where w̄ xð Þ is the amplitude of motion and o the angular frequency.
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Substituting Eq. (3) into Eq. (1) yields the following boundary value problem:

a4w̄00 xð Þ
� �00

� pw̄0 xð Þð Þ
0
� o2b4w̄ xð Þ ¼ 0, (4)

which its boundary conditions are determined in consistency with the physical conditions at the two ends of
the beam and are chosen as [3]

a4w̄00
� �0

¼ 0 or w̄ ¼ 0; at x ¼ 0; L (5)

and either

a4w̄00 ¼ 0 or w̄0 ¼ 0; at x ¼ 0; L. (6)

3. Solution approach

3.1. Derivation of WKB approximation

In order to use the WKB approximation, the first step is to transfer Eq. (4) into a singular perturbation
differential equation. For this end, the governing equation of motion is expressed as

�4 a4w̄00 xð Þ
� �00

� �4 pw̄0 xð Þð Þ
0
� b4w̄ xð Þ ¼ 0, (7)

in which

�2 ¼ o�1. (8)

In most of engineering applications, the natural frequencies of the beams are greater than unity and the
parameter e has a small value. As the result, for a truncated beam, one can deal with Eq. (7) as a singular
perturbation boundary value problem with a dispersive nature. Thus, the WKB method may be utilized to
derive an asymptotic expression for the solution of Eq. (7) as a function of the perturbation parameter e. This
expression is written in the following exponential form [26,27]:

w̄ xð Þ ’ exp
1

d

Xn

k¼0

Sk xð Þdk

 !
; d! 0, (9)

where the conditions that must be satisfied for Eq. (9) to be applicable are

dSkþ1 xð Þ5Sk xð Þ; d! 0;

dkSkþ1 xð Þ51; d! 0:
(10)

Setting d proportional to e, substituting Eq. (9) into Eq. (7) and dividing by the exponential factors, yields
an ordinary differential equation in terms of the Sk functions and their derivatives and power terms of e. By
dominate balance of terms with the same order of magnitude, one can obtain a sequence of identical equations
which determine Sk functions as follows:

��1 : S0
4
0 ¼

b4

a4
, (11)

�0 : S01 ¼ �
3S00
2S00
� 2

a0

a
, (12)

�1 : S02 ¼ �
3S00

2
0

4S0
3
0

� 6
a0S000
aS0

2
0

�
S0000

S0
2
0

� 3
S000S01

S0
2
0

�
3S0

2
1

2S00
�

a00

aS00
� 6

a0S01
aS00

�
3S000
2S00
� 3

a02

a2S00
þ

p

4a4S00
, ð13Þ

�2 : S04 ¼ � � � . (14)
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Eq. (11) is a first-order nonlinear differential equation and can be simply solved. The other equations are
linear and determine the higher order terms in the expansion. Since Eq. (11) has four solutions, there are four
fundamental solutions for w̄ xð Þ and the general solution of Eq. (7) is a linear combination of the fundamental
set of solutions. This general solution can be simplified as

w̄ xð Þ ¼ eA1 c1 sinh A2 þ c2 cosh A2ð Þ þ eA3 c3 sin A4 þ c4 cos A4ð Þ, (15)

in which

A1 ¼
Xn

k¼0

�2kf 2kþ1ð Þ,

A2 ¼
Xn

k¼0

�2k�1f 2kð Þ;

A3 ¼
Xn

k¼0

�1ð Þk�2kf 2kþ1ð Þ,

A4 ¼
Xn

k¼0

�1ð Þk�2k�1f 2kð Þ, ð16Þ

where

fi ¼ Si (17)

while S0 is set to be equal to

S0 ¼

Z x

0

b
a
dx. (18)

Inserting the obtained solution (Eq. (15)) into the boundary condition equations yields the following set of
linear equations:

Ac ¼ 0; c ¼ c1 c2 c3 c4
� �T

. (19)

This homogeneous linear system has non-trivial solutions if and only if the determinant of the
corresponding coefficient matrix A is zero. This determinant will define a frequency function as follows:

f oð Þ ¼ Aj j ¼ 0. (20)

The roots of Eq. (20) are called natural frequencies and can be determined numerically. In addition, the
normalized mode shapes of the free vibrations of the beam can be determined by solving the three equations of
Eq. (19) for c2, c3 and c4 in terms of c1 along with using one of the conventional normalization methods. Note
that for constant values of a and b, Eq. (15) reduces to the analytical exact solution for uniform beams.
3.2. Homogeneous variable-section beam

Consider a variable-cross-section beam (Fig. 1) made of a homogeneous material with Young’s modules of
elasticity E and mass density r for which the section area function is s and the gyration radius r defines the
second area moment of inertia of the section about the so-called neutral axis, as follows:

I ¼ sr2. (21)

Setting the beam characteristics, the fi functions for a third-order WKB approximation of the transverse
free vibration mode shapes of the beam can be simplified as

f0 ¼
1

k

Z x

0

1ffiffi
r
p dx,
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Fig. 1. Geometry of a homogeneous variable section beam.
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f1 ¼ �
1

4
ln rs2,

f2 ¼
k
32

Z x

0

mdx,

f3 ¼ �
k2

64
m
ffiffi
r
p

, ð22Þ

where

m ¼ 16
s00

ffiffi
r
p

s
þ

s0r0

s
ffiffi
r
p

� �
þ 12

r00ffiffi
r
p �

s02
ffiffi
r
p

s2

 !
þ

r02

r
ffiffi
r
p þ

8p

Esr
ffiffi
r
p ,

k ¼

ffiffiffiffi
E

r
4

s
, ð23Þ

4. Examples and discussion

4.1. Linearly tapered cantilever beam

To examine the validity of the developed asymptotic approach we consider the problem of determining the
natural frequencies and mode shapes of a linearly tapered cantilever beam as shown in Fig. 2 which displays a
linear variation of height while the beam width is constant. Let us define the following non-dimensional
frequency and length:

x ¼ x=L; l ¼
o
o0

, (24)

where o0 is given by

o0 ¼

ffiffiffiffiffiffiffiffi
Er20
rL4

s
(25)

and r0 is the radius of gyration at the root of the beam. For the configuration shown in Fig. 2 the variation of
beam cross section area and radius of gyration can be evaluated as

s ¼ s0Z; r ¼ r0Z, (26)

where s0 is the cross section area at the root of the beam and Z ¼ 1�cx, in which c is the taper ratio constant.
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Fig. 2. Geometry of a tapered beam with linearly varying height.
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The beam is clamped at its root (the origin point of xyz coordinate system) and is free at the tip. Thus the
enforced boundary conditions at the clamped and free ends can be stated as following:

w̄jx¼0 ¼ 0; w̄0
		
x¼0
¼ 0; w̄00

		
x¼L
¼ 0; w̄000

		
x¼L
¼ 0. (27)

Using the first-order WKB solution and applying the boundary conditions, gives the transverse
displacement of the beam as follows:

w̄ ¼ c1Z�0:75 sin c� sinh cþ g cos c� cosh cð Þð Þ, (28)

where

c ¼ 2c�1
ffiffiffi
l
p ffiffiffi

Z
p
� 1

� �
,

g ¼
a1 sin c� a2 sinh cþ a3 cosh c� cos cð Þ

a1 cos c� a2 cosh cþ a3 sinh cþ sin cð Þ

� �				
x¼1

ð29Þ

and

a1 ¼ Z2:5 21c2 � 16lZ
� �

,

a2 ¼ Z2:5 21c2 þ 16lZ
� �

,

a3 ¼ 32cZ3
ffiffiffi
l
p

. ð30Þ

Setting the determinant of the coefficient matrix equal to zero along with some simplifications yields the
following equation for obtaining the beam natural frequencies:

f lð Þ ¼ b1 sinhc cosc� coshc sincð Þ � b2 sinhc cosc� coshc sincð Þ


þb3 1þ coshc coscð Þ þ b4 1� coshc coscð Þ

�		
x¼1 ¼ 0, ð31Þ

where

b1 ¼ 336c3
ffiffiffiffiffi
lZ

p
,

b2 ¼ 512c lZð Þ1:5,

b3 ¼ 256 lZð Þ2,

b4 ¼ 105c4. ð32Þ
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Table 1

Non-dimensional second natural frequencies li of the linearly height tapered beam vs. taper ratio c

c l1 l2 l3

Ref. [13] 1st-order WKB % Err. Ref. [13] 1st-order WKB % Err. Ref. [13] 1st-order WKB % Err.

0 3.516 3.516 0 22.039 22.039 0 61.73 61.73 0

0.1 3.559 3.559 0 21.338 21.339 0 58.98 58.973 0

0.2 3.608 3.609 0 20.621 20.618 0 56.192 56.188 0

0.3 3.667 3.668 0 19.881 19.87 0.1 53.322 53.313 0

0.4 3.737 3.738 0 19.114 19.091 0.1 50.354 50.326 0.1

0.5 3.824 3.822 0 18.317 18.279 0.2 47.265 47.216 0.1

0.6 3.934 3.919 0.4 17.488 17.428 0.3 44.025 43.953 0.2

0.7 4.082 4.056 0.6 16.625 16.534 0.5 40.588 40.461 0.3

0.8 4.292 4.236 1.3 15.743 15.599 0.9 36.885 36.719 0.4

0.9 4.631 4.515 2.5 14.931 14.679 1.7 32.833 32.528 0.9

0.99 5.214 5.118 1.9 14.967 14.47 3.3 29.727 28.942 2.6
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Now using Eqs. (28) and (31), the first-order approximation of the non-trivial solutions of the characteristic
equation can be numerically obtained which results in the natural frequencies and the mode shapes of the
beam. By using the above formulation the first three non-dimensional natural frequencies of the beam are
evaluated and shown in Table 1 in comparison with those given in Ref. [13] for a range of beam taper ratios
varying from zero up to the limit value of 0.99. Fig. 3 illustrates the first three natural mode shapes for the case
of c ¼ 0.5 using the present solution along with those obtained by the dynamic stiffness method [13]. The
comparison of the results shows a very good agreement between the two methods.

It is well known that the finite element and the other approximation methods become more and more
unreliable at higher frequencies [13], while the proposed WKB approximation fulfills, in general, more
accuracy for higher frequencies due to the decreasing of the perturbation parameter e. The results given in
Table 1 illustrate this matter as well. It is also concluded from Table 1 that the accuracy of the first
approximation gradually decreases with the increase in taper ratio.

4.2. Rotating beam with linearly varying height and width

Since the second-order WKB approximation does not include the axial force distribution, higher order
terms must be used to analyze free vibration of beams with axial force. For instance, free vibration of rotating
beams is an interesting case of study in this field including axial force distribution. In this section a cantilever
beam of linearly varying height and width as shown in Fig. 4 is used to examine the validity of the introduced
approximation. Similar to the previous example, the cross section area and radius of gyration can be expressed
as follows:

s ¼ s0Z2; r ¼ r0Z. (33)

Note that the geometric properties given in Eq. (33) can be employed to describe a large number of linearly
tapered beams with different cross sections, namely circular and rectangular cross sections, etc.

It is assumed that the tapered beam is rotating about the z-axis at constant angular velocity of O. Thus the
axial force distribution over the beam is determined by

p xð Þ ¼ O2

Z L

x

rs zð Þzdz. (34)

Substituting Eqs. (33) and (34) into Eq. (22) and carrying out some algebraic simplifications results in the
first four terms of the series in Eq. (16) as comes below:

f0 ¼ � 2c�1
ffiffiffi
l
p ffiffiffi

Z
p
� 1

� �
,

f1 ¼ �
5

4
ln Z,
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Fig. 3. First three natural mode shapes of the linearly height tapered beam with taper ratio of 0.5.

Fig. 4. Geometry of a tapered beam with linearly varying height and width.
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f2 ¼
17

16

cffiffiffiffiffi
lZ

p �
1

240

1

c3
ffiffiffi
l
p 6c4 � 16c3 þ 12c2 � 32

� �
s2 þ 255c4

� �

þ
1

120

s2

c3Z2
ffiffiffiffiffi
lZ

p 5c4x4 � 30c2x2 þ 40cxþ 3c4 � 8c3 þ 6c2 � 16
� �� �

,

f3 ¼ �
17

64

c2

lZ
þ

1

96

s2

lZ3
3c2x4 � 8cx3 þ 6x2 � 3c2 � 8cþ 6

� �� �
, ð35Þ

where s is the non-dimensionalized rotational frequency of the beam as defined by

s ¼
O
o0

. (36)

The second- and third-order asymptotic approximations can be derived using Eq. (35). The boundary
conditions of the considered rotating beam are the same conditions given in Eq. (27). The frequency equations
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for both second and third-order WKB approximations are obtained from setting the determinant of their
corresponding coefficient matrices to zero. The frequency equations for these cases are long-winded and more
complicated than that given in Eq. (31) and are not presented here. Since the coefficient matrix A is of small
dimensions, its determinant can be simply calculated and thus the frequency equations can easily be solved
numerically. For instance, a frequency marching procedure can be employed to find the natural frequencies
and subsequently the corresponding mode shapes. The solution is carried out for the first three natural
frequencies of a case as is shown in Fig. 4 using both second and third-order approximations. The taper ratio
is taken to be 0.5 and the results are given in Tables 2–4 for a range of non-dimensionalized rotational
frequencies in comparison with those given in Ref. [13]. Further, the natural mode shapes of the beam for the
case with non-dimensionalized rotational frequency of 5.0 are shown in Fig. 5 for both third-order WKB
asymptotic solution and method of Ref. [13]. Finally, Tables 2–4 and Fig. 5 demonstrate a good agreement
between the proposed solution and Ref. [13] in the present case of study in which the effect of axial
force distribution is included as well. Tables 2–4 also show a rapid convergence of the second-order
approximation to the third-order approximation for calculating the natural frequencies chiefly in the first
natural frequency. Moreover, from the results given in Tables 2–4 it can be concluded that the accuracy of the
asymptotic solution increases for higher natural frequencies. Tables 2–4 also show that higher-order WKB
approximations should be used to compute more accurate natural frequencies in higher rotational frequencies.
5. Conclusion

AWKB approximate based analytical solution of the free transverse vibrations of a class of variable-section
beams is presented and used to obtain the corresponding natural frequencies and mode shapes. The third-
order asymptotic solution are simplified for a homogeneous variable-cross-section beam and has been
employed to study two sets of illustrative examples; First, a set of linearly tapered beams with various taper
ratios are considered for determination of the natural frequencies and mode shapes applying a first-order
Table 2

Non-dimensional second natural frequency l1 of the linearly height and width tapered beam vs. rotational speed parameter s

s Ref. [13] 1st-order WKB 2nd-order WKB 3rd-order WKB

l1 l1 Error % l1 Error % l1 Error %

0 4.625 4.531 2.1 4.573 1.2 4.642 0.3

1 4.764 — — 4.642 3.1 4.822 1.2

2 5.156 — — 4.822 13.7 5.279 2.4

3 5.746 — — 5.279 25.7 5.896 2.7

4 6.473 — — 5.896 36 6.644 2.7

5 7.29 — — 6.644 43.7 7.538 3.4

Table 3

Non-dimensional second natural frequency l2 of the linearly height and width tapered beam vs. rotational speed parameter s

s Ref. [13] 1st-order WKB 2nd-order WKB 3rd-order WKB

l2 l2 Error % l2 Error % l2 Error %

0 19.548 19.344 0.1 19.558 0.1 19.572 0.1

1 19.68 — — 19.738 0.3 19.718 0.2

2 20.073 — — 20.293 1.1 20.126 0.3

3 20.712 — — 21.193 2.3 20.805 0.5

4 21.575 — — 22.42 3.9 21.734 0.7

5 22.636 — — 23.944 5.8 22.898 1.2
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Table 4

Non-dimensional third natural frequency l3 of the linearly height and width tapered beam vs. rotational speed parameter s

s Ref. [13] 1st-order WKB 2nd-order WKB 3rd-order WKB

l3 l3 Error % l3 Error % l3 Error %

0 48.5789 48.331 0.5 48.56 0.04 48.574 0.01

1 48.7073 — — 48.754 0.1 48.747 0.08

2 49.0906 — — 49.204 0.23 49.135 0.09

3 49.7227 — — 49.945 0.45 49.779 0.11

4 50.5938 — — 50.978 0.76 50.68 0.17

5 51.6918 — — 52.28 1.14 51.823 0.25
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Fig. 5. First three natural mode shapes of the linearly height and width tapered beam with taper ratio of 0.5.
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approximation. The comparison of the results with those in the literature demonstrates good agreement. The
other examined test case is a rotating beam linearly tapered in both height and width. The additional term in
this case with respect to the previous one is due to the inertial axial force distribution over the beam that
affects the free vibration characteristics. The beam is studied for a range of non-dimensional rotational
frequencies using second- and third-order approximate solutions in comparison with data available in the
literature. It is concluded from the results that the asymptotic solution can be practically used for the beams
including axial force distribution as well. As a significant conclusion, the obtained results show that in general
the accuracy of the present WKB solution increases for higher frequencies while almost all of the other
approximation approaches (e.g. finite element method, etc.) lose their reliability at higher frequencies. It is also
observed from the results that the precision of the approximate solution decreases as the axial force magnitude
or taper ratio increase and higher order terms are demanded to determine the free vibration characteristics
more accurately.
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